16 research outputs found

    Characterization of chromoshadow domain-mediated binding of heterochromatin protein 1α (HP1α) to histone H3.

    Get PDF
    The chromoshadow domain (CSD) of heterochromatin protein 1 (HP1) was recently shown to contribute to chromatin binding and transcriptional regulation through interaction with histone H3. Here, we demonstrate the structural basis of this interaction for the CSD of HP1α. This mode of H3 binding is dependent on dimerization of the CSD and recognition of a PxVxL-like motif, as for other CSD partners. NMR chemical shift mapping showed that the H3 residues that mediate the CSD interaction occur in and adjacent to the αN helix just within the nucleosome core. Access to the binding region would require some degree of unwrapping of the DNA near the nucleosomal DNA entry/exit site

    Genome-Wide Studies of Histone Demethylation Catalysed by the Fission Yeast Homologues of Mammalian LSD1

    Get PDF
    In order to gain a more global view of the activity of histone demethylases, we report here genome-wide studies of the fission yeast SWIRM and polyamine oxidase (PAO) domain homologues of mammalian LSD1. Consistent with previous work we find that the two S. pombe proteins, which we name Swm1 and Swm2 (after SWIRM1 and SWIRM2), associate together in a complex. However, we find that this complex specifically demethylates lysine 9 in histone H3 (H3K9) and both up- and down-regulates expression of different groups of genes. Using chromatin-immunoprecipitation, to isolate fragments of chromatin containing either H3K4me2 or H3K9me2, and DNA microarray analysis (ChIP-chip), we have studied genome-wide changes in patterns of histone methylation, and their correlation with gene expression, upon deletion of the swm1+ gene. Using hyper-geometric probability comparisons we uncover genetic links between lysine-specific demethylases, the histone deacetylase Clr6, and the chromatin remodeller Hrp1. The data presented here demonstrate that in fission yeast the SWIRM/PAO domain proteins Swm1 and Swm2 are associated in complexes that can remove methyl groups from lysine 9 methylated histone H3. In vitro, we show that bacterially expressed Swm1 also possesses lysine 9 demethylase activity. In vivo, loss of Swm1 increases the global levels of both H3K9me2 and H3K4me2. A significant accumulation of H3K4me2 is observed at genes that are up-regulated in a swm1 deletion strain. In addition, H3K9me2 accumulates at some genes known to be direct Swm1/2 targets that are down-regulated in the swm1¿ strain. The in vivo data indicate that Swm1 acts in concert with the HDAC Clr6 and the chromatin remodeller Hrp1 to repress gene expression. In addition, our in vitro analyses suggest that the H3K9 demethylase activity requires an unidentified post-translational modification to allow it to act. Thus, our results highlight complex interactions between histone demethylase, deacetylase and chromatin remodelling activities in the regulation of gene expression

    Identification of soluble protein fragments by gene fragmentation and genetic selection

    Get PDF
    We describe a new method, which identifies protein fragments for soluble expression in Escherichia coli from a randomly fragmented gene library. Inhibition of E. coli dihydrofolate reductase (DHFR) by trimethoprim (TMP) prevents growth, but this can be relieved by murine DHFR (mDHFR). Bacterial strains expressing mDHFR fusions with the soluble proteins green fluroscent protein (GFP) or EphB2 (SAM domain) displayed markedly increased growth rates with TMP compared to strains expressing insoluble EphB2 (TK domain) or ketosteroid isomerase (KSI). Therefore, mDHFR is affected by the solubility of fusion partners and can act as a reporter of soluble protein expression. Random fragment libraries of the transcription factor Fli1 were generated by deoxyuridine incorporation and endonuclease V cleavage. The fragments were cloned upstream of mDHFR and TMP resistant clones expressing soluble protein were identified. These were found to cluster around the DNA binding ETS domain. A selected Fli1 fragment was expressed independently of mDHFR and was judged to be correctly folded by various biophysical methods including NMR. Soluble fragments of the cell-surface receptor Pecam1 were also identified. This genetic selection method was shown to generate expression clones useful for both structural studies and antibody generation and does not require a priori knowledge of domain architecture

    The Effect of the Photoperiod on the Fatty Acid Profile and Weight in Hatchery-Reared Underyearlings and Yearlings of Atlantic Salmon Salmo salar L.

    No full text
    The influence of two light regimes, 16:8 h light/dark (LD 16:8) and 24:0 h light/dark (LD 24:0), in comparison to a usual hatchery light regime (HL), on the fatty acids content and weight gain in hatchery-reared underyearlings (at 0+ age) and yearlings (at 1+ age) of Atlantic salmon in the summer–autumn period was studied. The total lipids were analyzed by Folch method, the lipid classes using HPTLC, and the fatty acids of total lipids using GC. The increase in EPA and DHA observed in October in underyearlings and yearlings salmon (especially under LD 24:0) suggests they were physiologically preparing for overwintering. The changes in fatty acids and their ratios in juvenile Atlantic salmon can be used as biochemical indicators of the degree to which hatchery-reared fish are ready to smoltify. These associated with an increase in marine-type specific DHA and EPA, an increase in the 16:0/18:1(n-9) ratio, in correlation with a reduction in MUFAs (mainly 18:1(n-9)). These biochemical modifications, accompanied by fish weight gain, were more pronounced in October in yearlings exposed to continuous light (LD 24:0). The mortality rate was lower in experimental groups of underyearliings with additional lighting. Exposure to prolonged and continuous light did not affect yearlings mortality rate

    The Effects of Low-Level Helium–Neon (He–Ne) Laser Irradiation on Lipids and Fatty Acids, and the Activity of Energetic Metabolism Enzymes and Proteome in the Blastula Stage and Underyearlings of the Atlantic Salmon Salmo salar: A Novel Approach in Salmonid Restoration Procedures in the North

    No full text
    The effect of He–Ne laser irradiation on fishery parameters as well as on biochemical state, including the lipids and fatty acids, the activity of energy metabolism enzymes and the proteome in the blastula stage and in underyearlings of wild Atlantic salmon after irradiation at the cleavage stage/early blastula (considered as the stages when the cell has a high potential for differentiation) was studied. Low mortality rates of eggs were determined during embryogenesis, as well as increased weight gain and lower morality rates of underyearlings in the experimental group. This is confirmed by changes in a number of interrelated indicators of lipid metabolism: a decrease in total lipids content, including diacylglycerols, triacylglycerols, cholesterol esters, and the phospholipids content remained unchanged. The embryos in the blastula stage (experimental group) had higher aerobic capacity and an increase in pentose phosphate pathway activity. The proteome profiles of eggs in the blastula stage were 131 proteins, of which 48 were significantly identified. The major protein was found to be phosvitin. The proteomes of underyearlings were represented by 2018 proteins, of which 49 were unique for the control and 39 for the experimental group. He–Ne laser irradiation had a strong effect on the contents of histone proteins

    Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin

    No full text
    HP1 family proteins are adaptor molecules, containing two related chromo domains that are required for chromatin packaging and gene silencing. Here we present the structure of the chromo shadow domain from mouse HP1β bound to a peptide containing a consensus PXVXL motif found in many HP1 binding partners. The shadow domain exhibits a novel mode of peptide recognition, where the peptide binds across the dimer interface, sandwiched in a β-sheet between strands from each monomer. The structure allows us to predict which other shadow domains bind similar PXVXL motif-containing peptides and provides a framework for predicting the sequence specificity of the others. We show that targeting of HP1β to heterochromatin requires shadow domain interactions with PXVXL-containing proteins in addition to chromo domain recognition of Lys-9-methylated histone H3. Interestingly, it also appears to require the simultaneous recognition of two Lys-9-methylated histone H3 molecules. This finding implies a further complexity to the histone code for regulation of chromatin structure and suggests how binding of HP1 family proteins may lead to its condensation

    The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer

    No full text
    The heterochromatin protein 1 (HP1) family of proteins is involved in gene silencing via the formation of heterochromatic structures. They are composed of two related domains: an N–terminal chromo domain and a C–terminal shadow chromo domain. Present results suggest that chromo domains may function as protein interaction motifs, bringing together different proteins in multi-protein complexes and locating them in heterochromatin. We have previously determined the structure of the chromo domain from the mouse HP1β protein, MOD1. We show here that, in contrast to the chromo domain, the shadow chromo domain is a homodimer. The intact HP1β protein is also dimeric, where the interaction is mediated by the shadow chromo domain, with the chromo domains moving independently of each other at the end of flexible linkers. Mapping studies, with fragments of the CAF1 and TIF1β proteins, show that an intact, dimeric, shadow chromo domain structure is required for complex formation
    corecore